Graphical models via univariate exponential family distributions

نویسندگان

  • Eunho Yang
  • Pradeep Ravikumar
  • Genevera I. Allen
  • Zhandong Liu
چکیده

Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions. Our key contributions include a class of M-estimators to fit these graphical model distributions; and rigorous statistical analysis showing that these M-estimators recover the true graphical model structure exactly, with high probability. We provide examples of genomic and proteomic networks learned via instances of our class of graphical models derived from Poisson and exponential distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies

We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive ...

متن کامل

Graphical Models via Generalized Linear Models

Undirected graphical models, also known as Markov networks, enjoy popularity in a variety of applications. The popular instances of these models such as Gaussian Markov Random Fields (GMRFs), Ising models, and multinomial discrete models, however do not capture the characteristics of data in many settings. We introduce a new class of graphical models based on generalized linear models (GLMs) by...

متن کامل

Mixed Graphical Models via Exponential Families

Markov Random Fields, or undirected graphical models are widely used to model highdimensional multivariate data. Classical instances of these models, such as Gaussian Graphical and Ising Models, as well as recent extensions (Yang et al., 2012) to graphical models specified by univariate exponential families, assume all variables arise from the same distribution. Complex data from high-throughpu...

متن کامل

t-divergence Based Approximate Inference

Approximate inference is an important technique for dealing with large, intractable graphical models based on the exponential family of distributions. We extend the idea of approximate inference to the t-exponential family by defining a new t-divergence. This divergence measure is obtained via convex duality between the log-partition function of the t-exponential family and a new t-entropy. We ...

متن کامل

Vector-Space Markov Random Fields via Exponential Families

We present Vector-Space Markov Random Fields (VS-MRFs), a novel class of undirected graphical models where each variable can belong to an arbitrary vector space. VS-MRFs generalize a recent line of work on scalar-valued, uni-parameter exponential family and mixed graphical models, thereby greatly broadening the class of exponential families available (e.g., allowing multinomial and Dirichlet di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of machine learning research : JMLR

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015